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Introduction: SKR polarization

UNI

SKR is emitted from auroral magnetic field lines by the CMI (Cylotron Maser Instability) mechanism

R-X mode SKR is mainly right-hand (RH) circularly polarized from the North and left-hand (LH)
circularly polarized from the South; SKR can also be elliptic above £25° in latitude

Cassini around equatorial latitudes usually sees RH and LH SKR (from N and S), which experience
Incoherent superposition

Coherence length L of SKR is usually small compared to Cassini distance, L=c/(n*Af): For c=3e8 m/s,
refractive index nx1 and bandwidth Af=1 MHz we have L=300 m, even for Af=1 kHz (SKR fine
structure) itis just L=300 km.

Incoherent superposition usually leads to depolarization. Stokes vectors have to be added, and we do
this for two fully circularly polarized emissions of different sense (no linear component):

a A - ~ e A - I

1 1 1 S +Sg |  Superposed wave: S, =Sk -> v=d,.,=0 (0 dB or no difference)
sl dles  Olis, O O Flux S=S, +5 S, =2*S, -> v=d,..=1/3=0.33 (3 dB difference)
u 0 O 0 d.=d, =(S,-Sx)/(S,+Ss)  S1=10*Sg -> v=d,,;=9/11=0.81 (10 dB difference)
v 1 -1 1 5.-5% S, =100*S; -> v=d,,,=99/101=0.98 (20 dB diff.)
L - - 7L Y

Typical error of RPWS polarization measurement ~10%



SKR polarization from equatorial latitudes
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SKR incoherent superposition

leads to depolarization

SKR flux and total polarization
look different above and
below 100 kHz

d,,+=0.8 below 100 kHz is a

common SKR feature!

SKR, caterpillar SKR, 5 kHz

narrowband emissions



N-SKR
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SKR visibility and L-O mode waves

SKR north down to ~20°S, SKR south up to ~20°N -> L -O mode is RH from South and LH UNI

mixed SKR polarization within £20° latitude from North (Opposite to R-X mode)
White circles could be L-O mode waves

L-O mode waves often seen at low frequencies at
high s/c latitudes (most common around 50 kHz)

B g2
their spectral flux (normalized to 1 AU) ranges over
5 orders of magnitude around 1021 W/(m2Hz)
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SKR extended equatorial
shadow zone and torus

UNI
| GRAZ

SKR above 100 kHz has only small equatorial shadow zone due to
beaming (up to Enceladus orbit), usually fully polarized, very common
SKR from 40-100 kHz starts to have a more extended equatorial
shadow zone out to 20 R, typical polarization of 0.8, lower occurrence
SKR below 40 kHz is even less common, has a broader shadow zone,
and usually a low polarization (region of “caterpillar” SKR)

Beaming of SKR to low latitudes might be explained by torus leakage,
SKR magnetosheath reflection like for 5 kHz narrowband emissions is
rather unlikely due to too low electron density in sheath

[Figures
from

Wu et al.,
2024]
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Ray-tracing of SKR around plasma torus
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Assume we could see the radio waves:
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Inferior mirage” image of SKR UNI
| GRAZ
f”* Mirage images can be seen at Earth in a desert or at

Yy

[

e _ the sea under special conditions
— \ Direct ray through n=1 region (magnetosphere of
=N Saturn, no plasma). Cool air at Earth: n=1.0003

Refracted ray through n<1 region (plasma torus at
Saturn). Hot air close to surface at Earth: n=1.0002

Superior N~ Warm air : : :
mirage —~__ (low ) Refractive index of plasma n2=1-f 2/f2 (without B) or
e Cool air precise Appleton-Hartree equation
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Refracted 7
// _ [] N a
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Direction-finding

for SKR at low

frequencies:

Example:
d,,,=0.6
SpoI:O'G*Stot
Siang=0.4%5,, =S

rand noise

Interpret unpolarized part
as background noise!

SNR=0.6/0.4=3/2=1.8 dB
DF does not work for
such a low SNR

Might be possible for
d,,,=0.9, SNR=13 dB



Summary: SKR depolarization SUNI

SKR total polarization around 0.8 is quite common below 100 kHz, even less pol. below ~40 kHz
Depolarization could be due to Enceladus plasma torus in which f ,,.,#100 kHz

Incoherent superposition of R-X mode SKR from North (RH) and South (LH) leads to depolarization
(addition of Stokes vectors and not electric field vectors) with Cassini around equatorial plane

Incoherent superposition of R-X mode SKR with L-O mode SKR from the same hemisphere can also
lead to depolarization. However, if L-O mode is 15 dB (and‘more) less intense than the R-X mode,
one would not recognize and the R-X mode would remain fully polarizea

Depolarization of SKR below 100 kHz could be due to L-O mode waves or another not yet identified
mechanism in the Enceladus plasma torus (k rather parallel to B, not close to 90°)

Direction-finding (DF) of depolarized SKR impossible when unpolarized part is viewed as noise
n3d-spectra could be made available for the public throughout Cassini Saturn tour (2004-2017)




Appendix: How to measure SKR polarization

Q“':‘ view from +x
Saturn RN

E. E.antennas

rotating
E-field
wave vector
frame | . — " mmmm——_—

lightning storm
on hightside
at 35° South

Z'and k-vector

polarization ellipse

RPWS antennas

and MAG-Boom not to
scale with regard to
Cassini model

E,antenna

s/c frame

+ty
+Z

Fully calibrated RPWS antenna system with 3 monopole antennas E, E,, E,,
or E, (E,-E,) dipole. In survey mode antenna pair E -E,, is often used.

[Fischer et al., 2007/]
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4 equations with 4 unknowns:

S (intensity), g, u, v (normalized
Stokes parameters)

4 measurement values: auto-
correlations of E, & E,, and real and
Imaginary part of cross-correlation
h, and h,, are effective length of
antennas (known)

Matrix M represents source-
antenna geometry (also known)

d; = Ef" +u2 d,



