Exoplanet and Brown Dwarf Radio Emissions

Melodie Kao

Lowell Observatory

Aurora electron cyclotron maser

Radiation belts synchrotron

Aurora: Spin-driven

Melodie Kao (mkao@lowell.edu)

Aurora: Wind-driven

DIRECT

Radiation belts

Melodie Kao (mkao@lowell.edu)

adapted from Rob Kavanagh

Plasma (solar wind / volcanism)

Melodie Kao (mkao@lowell.edu)

adapted from Rob Kavanagh

Cauley+ (2019) Yadav & Thorngren (2017)

Melodie Kao (mkao@lowell.edu)

hot Jupiters receive extra thermal energy from host stars

Indirect: Star-planet interactions Power ~ $v_{rel} R^2 (B_{planet})^2$

Melodie Kao (mkao@lowell.edu)

hot Jupiters receive extra thermal energy from host stars

Melodie Kao (mkao@lowell.edu)

transition region: ~10% transmission efficiency

Melodie Kao (mkao@lowell.edu)

adapted from Rob Kavanagh

Recent radio SPI searches

Vedantham+ 2020 Perez-Torres+ 2021 Pineda & Villadsen+ 2023 Triglio+ 2023 (...and references therein)

Alfvén velocity > outflowing plasma velocity

Kavanagh+ 2021

"No feasible scenario where the planet can induce radio emission in the star's corona"

Kavanagh+ 2021

Kavanagh+ 2021

Yes!

Kavanagh+ 2021

Indirect: Star-planet interactions (radio)

Pineda & Villadsen 2023 see also: Triglio+ 2023

Indirect: Star-planet interactions

Pineda & Villadsen 2023 see also: Triglio+ 2023

Melodie Kao (mkao@lowell.edu)

SKA

DSA-2000

Aurora: Rotation-driven

Melodie Kao (mkao@lowell.edu)

Aurora: Wind-driven

DIRECT

Radiation belts

Direct:

Radio Aurorae $\nu_{\rm [MHz]} \approx 2.8 \; B_{\rm planet [Gauss]}$

Melodie Kao (mkao@lowell.edu)

magnetic field

$\nu_{\rm MHz} \approx 2.8 B_{\rm Gauss}$

Melodie Kao (mkao@lowell.edu)

frequency

magnetic field

$\nu_{\rm MHz} \approx 2.8 B_{\rm Gauss}$

$\begin{array}{c} S \propto \\ P_{O} \\ P$

Saur+ 2013

Soc power dissipated

 R^2

obstacle size

planet magnetic field

Saur+ 2013

Melodie Kao (mkao@lowell.edu)

$B_{\rm wind} \Delta u^2 \sin^2 \theta \sqrt{\rho_{\rm wind}}$

(magnetospheric plasma flow properties)

obstacle size

(magnetospheric plasma flow properties)

Melodie Kao (mkao@lowell.edu)

$\lambda u^2 \sin^2 \theta$

Yantis+ 1977 Winglee+ 1986 Zarka+ 1997 Bastian+ 2000 Farrell+ 2003 Lazio+ 2004 Ryabov+ 2004 Guenther+ 2005 Shiratori+ 2005 Winterhalter+ 2006 Majid+ 2006 George+ 2007 Lazio+ 2007 Lecavelier Des Etangs+ 2009 Smith+ 2009 Lazio+ 2010a Lazio+ 2010b Zarka+ 2011 Lecavelier Des Etangs+ 2011 Stroe+ 2012 Lecavelier Des Etangs+ 2013 Hallinan+ 2013 Sirothia+ 2014 Murphy+ 2015 Vasylieva 2015 Knapp+ 2016 Turner+ 2017 Bastian+ 2018 O'Gorman+ 2018 de Gasperin+ 2020 Green+ 2021 Narang+ 2021 Turner+ 2021

Melodie Kao (mkao@lowell.edu)

No confirmed exoplanet radio aurorae.

special thanks: Jake Turner, Marin Anderson, Mary Knapp

Yantis+ 1977 Winglee+ 1986 Zarka+ 1997 Bastian+ 2000 Farrell+ 2003 Lazio+ 2004 Ryabov+ 2004 Guenther+ 2005 Shiratori+ 2005 Winterhalter+ 2006 Majid+ 2006 George+ 2007 Lazio+ 2007 Lecavelier Des Etangs+ 2009 Smith+ 2009 Lazio+ 2010a Lazio+ 2010b Zarka+ 2011 Lecavelier Des Etangs+ 2011 Stroe+ 2012 Lecavelier Des Etangs+ 2013 Hallinan+ 2013 Sirothia+ 2014 Murphy+ 2015 Vasylieva 2015 Knapp+ 2016 Turner+ 2017 Bastian+ 2018 O'Gorman+ 2018 de Gasperin+ 2020 Green+ 2021 Narang+ 2021

Turner+ 2021

Melodie Kao (mkao@lowell.edu)

No confirmed exoplanet radio aurorae.

special thanks: Jake Turner, Marin Anderson, Mary Knapp

Aurora: Rotation-driven

Melodie Kao (mkao@lowell.edu)

Aurora: Wind-driven

DIRECT

Radiation belts

(Magnetospheric-Ionospheric) MI-Coupling

Bagenal+ 2014

Melodie Kao (mkao@lowell.edu)

magnetic field

plasma disk

(Magnetospheric-Ionospheric) MI-Coupling

FIG. 2-Phase-switching records showing the appearance of the variable source

Franklin & Burke 1955

Melodie Kao (mkao@lowell.edu)

EMITTING CONE

Imai Lab

W at a

Melodie Kao (mkao@lowell.edu)

Radio bursts from a brown dwarf

Berger+ (2001)

TVLM 513-46546 M9 Hallinan+ 2007

2M1047

T6.5, 900K

SIMP0136

Kao+ 2016

T2.5, 1100K, ~13 M_J

Melodie Kao (mkao@lowell.edu)

Berger+ (2001)
TVLM 513-46546 M9 Hallinan+ 2007

2M1047

SIMP0136

Kao+ 2016

T2.5, 1100K, ~13 M_J

T6.5, 900K Route & Wolszczan 2012

Melodie Kao (mkao@lowell.edu)

Pineda, Hallinan & Kao 2017

M Dwarfs ~2300-3800 K

L Dwarfs ~1500-2200 K

T Dwarfs ~550-1400 K

Y Dwarfs ~250~450 K

> Gas Giant Planets

Melodie Kao (mkao@lowell.edu)

Ultracool dwarfs: Late M dwarf through brown dwarfs

Brown dwarfs: high potential to power aurorae.

Saur+ 2021

Melodie Kao (mkao@lowell.edu)

auroral host's radius

Convected thermal energy sets magnetic field?

Christensen+ (2009) Cauley+ (2019) Yadav & Thorngren (2017)

Convected thermal energy sets magnetic field? Maybe not.

Kao+ (2018)

Some brown dwarfs strongly magnetized, others not. Why?

Vedantham+ 2023 Vedantham+ 2020b

Some brown dwarfs strongly magnetized, others not. Why?

Vedantham+ 2023 Vedantham+ 2020b

magnetic anomaly?

only for dipole-dominated

What **shape** are substellar magnetic fields?

What **shape** are substellar magnetic fields?

Radiation belts

Forbrich & Berger 2009

melodie.kao@ucsc.edu

DECLINATION (J2000)

Radio search for companions: Marginally resolved ~20 R_{UCD}

Forbrich & Berger 2009

melodie.kao@ucsc.edu

DECLINATION (J2000)

Radio search for companions: Marginally resolved ~20 R_{UCD}

radiation belt? :-)

Forbrich & Berger 2009

melodie.kao@ucsc.edu

DECLINATION (J2000)

Radio search for companions: Marginally resolved ~20 R_{UCD} closer object more powerful telescope

Melodie Kao (mkao@lowell.edu) 39 Dishes:

1x **100m** 10x **25m**

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023)

extended

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023)

Melodie Kao (mkao@lowell.edu)

+ long-lived

Melodie Kao (mkao@lowell.edu)

aurorae 3 kiloGauss

not aurorae

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023)

Melodie Kao (mkao@lowell.edu)

aurorae 3 kiloGauss

not aurorae @ 2 Gauss

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023)

Melodie Kao (mkao@lowell.edu)

aurorae 3 kiloGauss

8.4 gigahertz synchrotron @ 2 Gauss **15 MeV**

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023)

See J. B. Climent Oliver's talk!

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023) see also: Climent+ (Science 2023)

Melodie Kao (mkao@lowell.edu)

IR aurora - NASA, ESA, CSA, Jupiter ERS Team radiation belt - Bolton+ 2004

mkao@lowell.edu

Younger, hotter: more strongly magnetized

ر 83.8 M ر 78.6 M ر 75.4 M ر 73.3 M
ر62.9 M ر52.4 M ر41.9 M
31.4 M _J
21.0 M _J
ر 15.7 M ر 13.6 M 10.5 M
J

10¹⁰

Younger, hotter: more strongly magnetized? Maybe not.

Melodie Kao (mkao@lowell.edu)

Kao+ (2016, 2018): **B** fields exceed predictions from convected heat flux

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023): **Brown dwarfs have** radiation belts

Need more data: **Empirical Scaling Relationship**

aurorae?

Melodie Kao (mkao@lowell.edu)

M Dwarfs

L Dwarfs ~1500-2200 K

T Dwarfs ~550-1400 K

AND.

Y Dwarfs ~250~450 K

Gas Giant Planets

Faherty+ (2024)

Melodie Kao (mkao@lowell.edu)

Target - 487 K Control - 487 K

Temperature inversion ... no host star

Melodie Kao (mkao@lowell.edu)

Target - 487 K Control - 487 K

Temperature inversion: Auroral heating?

2-4 GHz (0.7 - 1.4 kiloGauss) No detection ... yet

Weakly magnetized objects need to rotate faster.

Weakly magnetized objects need to rotate faster.

Coming soon: Survey of Y dwarfs Carlos Ayala & Kao+ (in prep)

M Dwarfs

Cype

L Dwarfs ~1500-2200 K

T Dwarfs ~550-1400 K

AN ?

Y Dwarfs ~250~450 K

Gas Giant Planets

Terrestrial planets

Terrestrial planets: Interaction-driven aurorae

direct

Melodie Kao (mkao@lowell.edu)

$\leq 10 \text{ MHz emission}$ (terrestrial planets)

Listener Node (LN)

Local Constellation Communications (RF Array)

Melodie Kao (mkao@lowell.edu)

Instrument Payload: Radio and Antenna

Flight Computer, **Power Processing**, and Battery

Attitude Determination and Control

Propulsion

Knapp, Paritsky, Kononov, Kao (2024 NIAC)

 \bullet

Melodie Kao (mkao@lowell.edu)

$\lesssim 10 \text{ MHz emission}$ (terrestrial planets)

Melodie Kao (mkao@lowell.edu)

$\lesssim 10 \text{ MHz emission}$ (terrestrial planets)

Knapp, Paritsky, Kononov, Kao (2024 NIAC)

i i i

Melodie Kao (mkao@lowell.edu)

$\leq 10 \text{ MHz emission}$ (terrestrial planets)

Knapp, Paritsky, Kononov, Kao (2024 NIAC)

Current view

Novaco & Brown (1978)

Melodie Kao (mkao@lowell.edu)

100 nodes

Melodie Kao (mkao@lowell.edu)

Coronal Mass Ejections Gas Giants ce Giants Global 21 cm signal

100 - 10,000 nodes

Kononov, Knapp+ (in review)

Melodie Kao (mkao@lowell.edu)

Stellar Radio Bursts 21 cm tomography

100,000 nodes: Earth twin exoplanet aurorae

Melodie Kao (mkao@lowell.edu)

Aurora: Rotation-driven

Melodie Kao (mkao@lowell.edu)

Aurora: Wind-driven

DIRECT

Radiation belts

book chapter review: Brain, Kao & O'Rourke (2024)

https://arxiv.org/abs/2404.15429

extra slides

• L2

S.

Provide and a second seco

76

Kononov+ (2024)

IR aurora - NASA, ESA, CSA, Jupiter ERS Team radiation belt - Bolton+ 2004

Melodie Kao (mkao@lowell.edu)

spatially resolvable?

coming soon from ngVLA!!

satellite magnetic field (...around brown dwarfs?)

Hess+ (2008) see also: Lamy+ (2008)

Louis+ (2019b)

Melodie Kao (mkao@lowell.edu)

$B_{\rm wind} \Delta u^2 \sin^2 \theta \sqrt{\rho_{\rm wind}}$

(magnetospheric plasma flow properties)

Uranus problem: a cooling ionosphere

Melin 2020

Melodie Kao (mkao@lowell.edu)

Neptune

Uranus problem: a cooling ionosphere

(Y thermosphere temperature

Melin 2020

Uranus problem: a cooling ionosphere

Melin 2020

- x solar cycle
 - < seasons
- **x** geometric viewing effects

Solar wind power governs Uranus thermosphere

Masters, Szalay, Zomerdijk-Russell, Kao (2024)

Solar wind power governs Uranus thermosphere

Melodie Kao (mkao@lowell.edu)

(pPa) P_{sw,19αυ}

Solar wind power governs Uranus thermosphere

Solar wind power governs Uranus thermosphere

Solar wind power governs Uranus thermosphere

Solar wind power governs Uranus thermosphere

Masters, Szalay, Zomerdijk-Russell, Kao (2024)

Solar wind power governs Uranus thermosphere... also Neptune's?

Masters, Szalay, Zomerdijk-Russell, Kao (2024)

Melodie Kao (mkao@lowell.edu)

Temperature (K)

declination (arcsec)

Yes: atmosphere <u>2x</u> cooler*

Global heating from Jovian aurorae respond to solar wind dynamic pressure

O'Donoghue+ (2021)

Kononov+ (2024)

Kononov+ (2024)

Melodie Kao (mkao@lowell.edu)

S cc power dissipated	R2 Obstacle size	B	win (mag	d
			2,000	-
rocky planet magnetic field (around stars?)		(עل <i>ע</i>	1,500	-
		ity (1,000	-
		dens	500	
		Flux	0	

Pineda & Villadsen 2023 see also: Triglio+ 2023

Melodie Kao (mkao@lowell.edu)

$\Delta u^2 \sin^2 \theta \sqrt{\rho_{\text{wind}}}$

Hamilton+ (2013) Image credit: NASA/Hamilton (New Horizons) Melodie Kao (mkao@lowell.edu)

Exo-volcanism seeding brown dwarf magnetospheres?

Mura+ 2017 (JUNO) Melodie Kao (mkao@lowell.edu)

satellite-driven

(e.g. lo-Jupiter interaction; star-planet interactions)

Mura+ 2017 (JUNO) Melodie Kao (mkao@lowell.edu)

*************** Europa

0

terrestrial satellites around brown dwarfs

Binarity enhances binary radiation belt occurrence rate.

Melodie Kao (mkao@lowell.edu)

radio aurorae require rarified plasma

melodie.kao@ucsc.edu

cyclotron freq. $\propto B$

Jp plasma freq. $\propto n_e^{1/2}$ $f = \frac{cyclotron freq}{\propto B}$

radio aurorae require rarified plasma

melodie.kao@ucsc.edu

melodie.kao@ucsc.edu

5

plasma freq. $\propto n_e^{1/2}$

cyclotron freq. $\propto B$

Weber+ 2017; see also: Daley-Yates & Stevens 2017, 2018

melodie.kao@ucsc.edu

5

plasma freq. $\propto n_e^{1/2}$

cyclotron freq. $\propto B$

Weber+ 2017; see also: Daley-Yates & Stevens 2017, 2018