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Introduction



Type IV Radio Bursts
• The solar atmosphere is a rich source of radio emission, especially during/after solar flares and CMEs

• Type IV bursts: broadband continua, often containing bursty features, during/after CMEs and flares

• Complex interplay of processes 
Ø Coherent vs. incoherent emission (Melrose 2017)
Ø Spontaneous vs. stimulated emission (Papadopoulos & Freund 1979)
Ø Thermal vs. nonthermal processes (Pick & Vilmer 2008)

Fig: Different types of radio bursts (Shamsuddin+2023)
Fig: Dynamic radio spectrum of a type IV burst



Challenges in Interpreting Type IV Bursts
• Disentangling emission mechanisms (Morosan+2019) 

• Diagnosing CME magnetic fields from radio spectra (Mondal+2020)

• Stationary (IVs) vs. moving (IVm) type IV sources (Morosan+2021)
Ø Spectral drift ≠ spatial drift – imaging reveals spatial motion even without frequency drift 

• IVm/IVs classification is blurred
Ø Gyrosynchrotron (GS) sources naturally show spatial drift (CME motion); apparent stationarity can result 

from coherent emission processes
Morosan+2021



Aims and Coupled Modelling Approach
Aims:
• Simulate GS emission from energetic electrons trapped in erupting CME flux ropes

• Move beyond idealised assumptions about corona and electron distributions

• Investigate how synthetic type IV spectra are shaped by:

Ø Variations in the electron energy distributions
Ø CME properties and dynamics
Ø Observer perspective



Aims and Coupled Modelling Approach
Aims:
• Simulate GS emission from energetic electrons trapped in erupting CME flux ropes

• Move beyond idealised assumptions about corona and electron distributions

• Investigate how synthetic type IV spectra are shaped by:

Ø Variations in the electron energy distributions
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Ø Observer perspective

Coupled Modelling Approach:
• Modular simulation chain linking:

Ø Coronal plasma dynamics including CMEs (MHD model)
Ø Energetic electron transport (particle transport code)
Ø Radio emission synthesis (gyrosynchrotron code)
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Modelling Framework

Husidic+2024

COCONUT - COolfluiD COroNal UnsTructured

Ø 3D ideal MHD model of the corona (Perri+2023)
Ø CME: unstable Titov-Démoulin flux rope (Linan+2023)

PARADISE (PArticle Radiation Asset Directed at 
Interplanetary Space Exploration) 

Ø Evolves energetic particles through dynamic MHD fields
Ø Solves focused transport equation stochastically (Wijsen 2020)

Ultimate Fast Gyrosynchrotron Codes (UFGSCs)

Ø Calculate GS emission and absorption
Ø Use fast, accurate numerical approximations (Fleishman & Kuznetsov 2010)
Ø Allow for arbitrary electron distributions (Kuznetsov & Fleishman 2021)



Simulation Setup
• Two eruption strengths in the CME simulation:

Ø ζ = 30 à B0 ≈ 5.8 G;    v0 ≈ 940 km/s
Ø ζ = 70 à B0 ≈ 10.6 G; v0 ≈ 1300 km/s

• Two power-law indices for electron injections: δ = 2 and δ = 3 (10 keV to 10 MeV)

• Three observer perspectives (“helio view”, “edge-on view”, ”face-on view”) with defined viewing fields

• Calculate GS emission along lines of sight and integrate over observer’s field of view

Husidic et al. (submitted)Observer is inside the corona (r < 0.1 au = 21.5 solar radii)



Simulation Results



CME Case ζ = 30

Husidic et al. (submitted)

Peak intensity ratios across δ-values:

Peak intensity ratios across views:



CME Case ζ = 30

Husidic et al. (submitted)

• Flatter spectrum (δ = 2) à more high-energy electrons
à stronger and longer lasting GS emission

• GS intensity depends on B-field strength and observer geometry

Ø Helio view: weakest emission (aligned fields, thinner region)
Ø Edge-on view: stronger emission (thicker flux rope cross 

section, stronger fields)
Ø Face-on view: strongest emission (optimal viewing angle +  

large region)

Credit: Emma Alexander, under CC BY 4.0.



CME Case ζ = 70

Peak intensity ratios across views:

Husidic et al. (submitted)

Peak intensity ratios across δ-values:



CME Case ζ = 70
• Similar trends as ζ = 30 cases

• Secondary emission lane detected at higher frequencies (edge-
on/face-on views)

Ø Localised GS enhancements from stronger B-fields

Husidic et al. (submitted)



Intensity Ratios across CME Cases

Husidic et al. (submitted)

• ζ = 70 CME yields stronger GS emission across vantage points

• Stronger magnetic fields à increased synchrotron power

• Stronger field gradients enhance electron trapping and GS 
emission



Summary and Outlook



Summary and Outlook
• Coupled Numerical Models

Ø COCONUT : 3D MHD coronal model
Ø PARADISE  : Energetic particle transport simulations
Ø UFGSCs      : Fast GS emission computations

• Modelling GS Emission in the Corona
Ø Type IV spectra are shaped by electron index, CME properties, and observer geometry
Ø Strongest GS emission originates from CME legs
Ø Results support GS as a key contributor of type IV bursts
Ø Coherent plasma processes cannot be excluded

• Outlook
Ø Future parametric studies will explore how CME B-fields shape GS signatures
Ø Aim to address the stationary vs. moving type IV conundrum
Ø Use PSP in situ data (radio waves, particles) to constrain model and link to observed events



Backup Slides



Peak Intensity Frequency Drift

Fig: Peak intensity frequency drifts from simulation and theory (Husidic et al., submitted)

• All obtained spectra exhibit similar structure, featuring a high-intensity centre surrounded by weaker emission, 
with the peak drifting towards lower frequencies over time

• Compare to characteristic synchrotron peak frequency (Ginzburg 1979)

• Both CME expansion and adiabatic cooling contribute to observed downward drift in the simulation results



PARADISE Distribution Scaling
• Output: differential intensity

• Provide electron distributions as                              to the UFGSCs, where energies are logarithmically spaced

• PARADISE distribution scaled to match a (relativistic regularised) Kappa distribution (rRKD, κ = 8) at 10 keV at 
injection location and injection time

• To avoid exact zeros in the electron distribution, an rRKD background is added

• Background ensures:
Ø Physical units of f
Ø Avoiding excessively steep gradients in f that could 

otherwise provide conditions for maser instability to grow

• Background contribution to GS emission is negligible 
(< 0.01 % at peak intensity) 

Husidic et al. (submitted)



Intensity Curves
• Roll-over: 

Ø 165 – 300 MHz for ζ = 30 
Ø 65 – 145 MHz for ζ = 70

• Lower roll-over frequencies observed at side/top 
views

• Spectral shapes not yet power-law, but already 
steeper than analytical predictions

• Strong self-absorption and evolving distributions 
steepen spectra early on

• Idealised synchrotron/GS models miss key 
complexities in evolving CME environments

• Observations often show steeper indices à trend 
consistent with our particle transport simulations

Husidic et al. (submitted)



Husidic et al. (submitted)

Weighted Magnetic Field Strength



Itô Calculus

• The FTE is equivalent to the stochastic differential equations (SDEs): 

with wi being Wiener processes ( = Brownian motion )

• SDEs describe the trajectory of a pseudo-particle in phase space

• Pseudo-particle ≈ phase space density element



Itô Calculus

• PARADISE solves the FTE by integrating the equivalent SDEs forward in 
time, i.e., 

• The average solar wind velocity and magnetic field are obtained from the 
3D ideal MHD models EUHFORIA or Icarus

• The diffusion coefficient are derived from a composite slab/2D turbulence 
model with the assumptions of QLT or a non-linear theory (modular)

Integrate and 
sample  ~108 

pseudo-particles



§ Axis-symmetric cross-field diffusion tensor:

§ Perpendicular mean free path:

§ Different assumptions about the turbulence give different diffusion 
coefficients

§ Implemented in PARADISE (modular):
1. Non-linear guiding center theory 

2. Field line random walk:

3. Empirical models:
1. Dröge et al. (2010): with

2. Zhang et al. (2009): 

4.

Cross-Field Diffusion Coefficients


