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Mechanisms of electromagnetic wave radiation by type III solar radio bursts
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𝟐 >1/2 ≲ 0.07 of a few percent of 
the plasma density n0

Electrostatic wave turbulence
(Langmuir/Z-mode  waves = LZ waves)



3 INDEPENDENT METHODS leading to similar results

 Large-scale, long-term , and high-resolution 2D/3V PIC simulations              

 2D theoretical and numerical model

 3D analytical calculations in the framework of weak turbulence theory extended to randomly
inhomogeneous plasmas

(with parameters relevant to type III solar radio bursts)                          

QUESTIONS

 What are the dominant processes of EM wave radiation at ωp by beam-driven LZ wave
turbulence in weakly to moderately magnetized and randomly inhomogeneous plasmas ?

 What are the radiation rates and energies of EM waves in the modes O, X and Z ?

 What is the impact of density fluctuations and magnetization on EM radiation ?

Objectives



First method : 2D/3V PIC simulations

Dispersion of electric and magnetic spectral energies (𝝎c /𝝎p= 𝟎. 𝟎𝟕 and 𝜟𝑵 = 𝟎. 𝟎𝟐𝟓)

Time variations of energies of O, X and Z modes for 𝟎 ≤ 𝝎c /𝝎p ≤ 0.5 and 𝜟𝑵 = 0.05
(normalized by the initial beam energy)

LZ wave turbulence 
 Spectral broadening of LZ waves : ∆𝜔 ≈ 𝜔௣Δ𝑁 due to density fluctuations
 LZ waves follow dispersion curves but are shifted to lower frequencies due to their 

trapping in density depletions :

EM waves radiated by LMC process at constant frequency
 Z-mode waves are excited down to their cutoff frequency (100% left-handed polarization)
 Z-mode waves have the largest energies and radiation rates  for any 𝜔௖/𝜔௣ ≤ 0.5

 O-mode waves are emitted with energies one order of magnitude below Z-mode waves

 X-mode waves are   not                 excited for 𝜔௖/𝜔௣ > 0.07
significantly excited for 𝜔௖/𝜔௣ = 0.02,

in agreement with our analytical results, i.e. X-mode is emitted only if 𝜔௖/𝜔௣ ≲ αΔ𝑁

Example of LMC process in PIC simulations

Z-mode wave radiated at same frequency

LZ wave in density depletion



Second method : New theoretical/numerical model for EM radiation at 𝝎𝒑

LZ wave turbulence in a 2D weakly magnetized plasma  
with applied density fluctuations 𝛿𝑛 (no beam)

current 𝛿଎⃗(𝑟, 𝑡)
due to LZ waves’ 

transformations on 𝛿𝑛

Model’s main assumptions
 All Transformations of ES waves on 𝛿𝑛 included  

with no assumptions (scattering, reflection,
refraction, tunneling, linear mode conversion LMC, …)

 No averaging on random wave phases
 Weak ponderomotrice effects
 Non self-consistent model

t=0

t > 0

Zakharov equations with 𝜔c > 0

Homogeneous
plasma

EM waves

depends on 𝑬 𝑎𝑛𝑑 𝛿𝑛Polarization vectorAmplitude of wave magnetic
field envelope of X (+) and Z (-) modes

Numerical solutions : time variation of electromagnetic energy Wem
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Theoretical/numerical model : results

Time variations of electromagnetic energy  for 𝝎c /𝝎p =0.05 and various ΔN and c/vT

 Energy and radiation rates of Z-mode waves are the largest ones

 O-mode waves have smaller rates and energies than Z-mode waves

 Upper row   :  𝜔௖/𝜔௣ > αΔ𝑁 : no X-mode emission (α ≈1-2)
Middle row :  𝜔௖/𝜔௣ ≈ αΔ𝑁 : small X-mode emission
Bottom row :  𝜔௖/𝜔௣ < αΔ𝑁 :  larger X-mode emission

 Same results with other 𝜔c /𝜔p , ΔN and c/vT

 Same results as PIC simulations 
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Third method : Analytical calculations in the framework of weak turbulence theory 
extended to randomly inhomogeneous plasmas (3D geometry)

Necessary condition for X and Z mode radiation via LMC

Radiation rates 𝝁± of X and Z-modes magnetic energy in randomly inhomogeneous and weakly magnetized plasmas with ωc/ωp < 0.2
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The radiation rates can be calculated by numerical integration if both LZ wave energy and density fluctuation spectra are known.

X (+),  Z(-)



Conclusions

The three independent methods used converge to the same results, which are :

 LMC is the dominant process of EM radiation at 𝜔௣ by beam-generated LZ wave turbulence in randomly inhomogeneous and weakly 
magnetized plasmas (0.1-1 au).

 Most important part of EM radiation at 𝜔௣ is emitted in the Z-mode, at frequencies 𝜔௖௓ ≲ 𝜔 ≲ 𝜔௣ down to the cutoff 𝜔௖௓, where 
polarization is 100% left-handed ; this radiation remains inside or close to the radio source.

 Only about 10% or less of EM energy radiated is escaping from the radio source, in the form of O-mode waves mainly.

 X-mode waves are only emitted in plasmas with 𝜔௖/𝜔௣ ≲ αΔ𝑁.

 Radiation rates are determined analytically and computed numerically using LZ waves’ and density spectra.

 This work can provide strong support to interpretation of observations by spacecraft as Solar Orbiter and Parker Solar Probe.

 Results can help to localize radio sources or diagnose solar wind plasmas.
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