Characterization of Fluctuations in Solar Type III Radio Spectra Observed by PSP and SolO

Panisara Thepthong¹, Matthieu Kretzschmar¹, Milan Maksimovic², Katerina Pesini^{2,3}

- (1) LPC2E, OSUC, CNRS, University of Orléans, CNES, 3A avenue de la Recherche Scientifique, 45071 Orléans, France
- (2) LIRA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France
- (3) Radboud Radio Lab, Department of Astrophysics, Radboud University Nijmegen, Nijmegen, The Netherlands

Solar Type III Burst

Credit : https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter/Catch_solar_bursts_in_new_citizen_science_project

- Produced by electron beams accelerated at solar flare reconnection sites
- Electron beams drive Langmuir waves, which are converted into radio waves near the plasma frequency through nonlinear processes

$$\omega_p \propto \sqrt{n_e}$$

- Characterized by a rapid drift in time towards lower frequencies
- Provides a powerful remote sensing diagnostic tool for electron acceleration and transport, and the conditions of the background plasma they travel through

Background Subtraction

Collecting Data

Type III Burst Detection

• The background signal was obtained by computing the average spectrum during the longest burst-free periods of each day.

Collecting Data

Background Subtraction

Type III Burst Detection

• The background signal was obtained by computing the average spectrum during the longest burst-free periods of each day.

Background Subtraction

Collecting Data

Type III Burst Detection

Results

Data Processing and Analysis

Sample from 29/09/2023

Background Subtraction

Collecting Data

Type III Burst Detection

- Detecting enhancements in radio flux across 5 selected frequencies for each spacecraft.
- A candidate Type III event is marked when the flux exceeds 3 x local MED in at least 3 of the selected frequencies.

Sample from 29/09/2023

- Select events that were simultaneously observed by both SolO and PSP
 - Time difference less than 10 mins

Type III Burst Detection

Collecting Data

Background Subtraction

Type III Burst Detection

Maximum flux fitting The maximum flux of Type III radio bursts for each frequency obtained by fitting a Gaussian function to the time profile of the burst (Chen et al. 2021).

Single Peak

 $F(t) = a_0 + a_1 e^{-b_t (t-t_0)^2}$

$$F(t) = a_0 + a_1 e^{-b_t (t-t_0)^2} + a_2 e^{-b_{t2} (t-t_{02})^2}$$

Panisara Thepthong

8

Preliminary Results

Preliminary Results

Results

Preliminary Results

The fluctuations of the maximum type III radio flux appear **'similar'** when observed by both spacecrafts, in despite of their different radial distances and heliolongitudes, suggesting that local effects are responsible for these fluctuations.

Fluctuation in Type III Spectra

PSP vs SolO | Gaussian Smoothing and Fluctuation Detection with Correlation

- Interpolate SolO to match PSP's frequency
- Gaussian weight smoothing
 - Different window size of $\Delta f/f$
- σ is used as a measured of the fluctuations at each scale and for each events. For a Type III with very small fluctuation, at $\Delta f/f = 1.5$, $\sigma_{ref} = 0.096$

0.5

Fine Structure : Striae

A narrowband, fragmented features forming chains of quasi-periodic striae in dynamic spectra, which are indicative of sub-second evolution in the electron distribution. Striae are often associated with CMEs (Chen et al. 2021; Clarkson et al. 2023).

13

Results

Fine Structure : Striae

PSP vs SolO | Gaussian Smoothing and Fluctuation Detection with Correlation

14

Preliminary Conclusion

• Despite differences in spacecraft positions, the fluctuations in the maximum flux of Type III bursts appear similar, suggesting that local mechanisms are responsible.

Future Work

- Improve the processing technique for Type III burst detection and fitting.
- Improve the statistical analysis.
 - Extend the dataset by including additional months and years.
 - Incorporate data from additional spacecraft, such as STEREO and Wind.
- Investigate striae in greater detail.

References

- Reid, H. A. S., & Ratcliffe, H. 2014, Research in Astronomy and Astrophysics, 14, 773
- Chen, L., Ma, B., Wu, D., et al. 2021, The astrophysical journal Letters, 915 (IOP Publishing)
- Clarkson, D. L., Kontar, E. P., Vilmer, N., et al. 2023, The Astrophysical Journal, 946 (American Astronomical Society), 33
- M. Pulupa, Bale, S. D., Badman, S. T., et al. 2020, The Astrophysical Journal Supplement Series, 246 (Institute of Physics), 49
- Raja, K. S., Maksimovic, M., Kontar, E. P., et al. 2022, The Astrophysical Journal, 924 (IOP Publishing), 58
- Gieseler, J., Dresing, N., Palmroos, C., et al. 2023, Frontiers in Astronomy and Space Sciences, 9 (Frontiers Media)