Propagation mode and sources location of the Jovian narrowband radiations from 3D numerical modeling of Juno/Waves observations

Adam BOUDOUMA - PRE X 2025, Marseille

INSTITUTE OF ATMOSPHERIC PHYSICS

The jovian radio emissions

The Juno mission

- Juno mission (2016 2025?):
 - Polar orbits with close flybys of the poles (<10000 km).
 - Massive observational data base (currently 9 years).
 - In-situ measurements in the plasma disk since ~2023.

Care Care			
and have		In	
		"ibound t	0 PJ07
Juno Prime Mission			
Ganymede	Europa	lo	
PJ34	PJ45 PJ5	7 PJ58	
E	xtended Mission		

Trajectory of the Juno probe for the initial period 2016-2021 (prime mission) and extended >2021 (extended mission)

Radio observations with the Waves instrument

Time-frequency spectrogram of Juno/Waves radio observations on the 2017/03/29.

Latitude and frequency distributions

- Latitude and frequency distributions between 2016 and 2019 (Louis et al., JGR, 2021):
 - nKOM and nLF distributions: similar and complementary statistical structures
 - Minima of occurrence of the nLF in the low latitudes explain its difficulty in being observed by missions prior to Juno.

Propagation of electromagnetic waves in plasmas

• Calculation of the refractive index of waves in plasma

Mode Separation: Local Plasma Measurements with JADE and MAG

- Waves: no polarization measurements.
- Juno crossing of the plasma disk:
 - **JADE** : n_e measurements
 - **MAG** : **B** measurements
 - Calculation of $\omega_{pe}(n_e)$ et $\omega_{ce}(B)$: it is possible to constrain the propagation mode according to 3 groups:
 - **Trapped modes: ZW** (i.e., Z-mode or W-mode) : $\omega < \omega_{pe}$
 - Free modes: XO (i.e., X-mode or O-mode) : $\omega_{uh} < \omega$
 - Undetermined mode: ZO (i.e., Z-mode or O-mode) : $\omega_{pe} < \omega < \omega_{uh}$

Mode separation: latitude and frequency distributions

- Exclusion of trapped observations (i.e., ZW)
- nKOM and nLF distributions of the propagation mode:
 - ZO-mode: nKOM and nLF are connected.
 - XO-mode: nKOM and nLF are disconnected.

Latitude and frequency distributions of Juno-Wave observations of (a) nKOM, (b) nLF and (c) nKOM+nLF in XO (green) and ZO (orange).

LsPRESSO : Large-scale Plasma Radio Emissions Simulation of Spacecraft Observations

Initialization : Simulation of the Juno observations

- Sources location:
 - We choose to constraint them with 2 parameters :
 - $\alpha = \angle (\nabla n_e, \mathbf{B})$, with $\alpha \in [0^\circ, 90^\circ]$ by 3° steps
 - $\epsilon = \text{centile}(||\nabla n_e||)$, with $\epsilon \in [0\%, 100\%]$ by 10% steps
 - Since there is no reliable model on intermittency, active sources are assumed to be permanent.

Generation scenarios:

Scenario #1 : Jones (1980)	Scenario #2 : Fung & Papadopoulos (1987)	Scenario #3 : Aligned with - ${f abla} n_e$ at ω_{pe}	Scenario #4 : Aligned with - ∇n_e at $2\omega_{pe}$ Frequency: $\omega = 2\omega_{pe}$ Directivity: $\mathbf{r} \parallel -\nabla n_e$		
Frequency: $\omega = \omega_{pe}$ Directivity: $\angle (\mathbf{r}_{\pm}, \mathbf{B}) = \frac{\pi}{2} \mp (\frac{\pi}{2} - \beta)$	Frequency: $\omega = 2\omega_{uh}$ Directivity: $\mathbf{r} \perp \mathbf{B}$	Frequency: $\omega = \omega_{pe}$ Directivity: $\mathbf{r} \parallel - \nabla n_e$			
$\beta = \arctan\left(\sqrt{\frac{\omega_{pe}}{\omega_{ce}}}\right)$					

PSI 😿

Initialization : Simulation of the Juno observations

- Sources location:
 - We choose to constraint them with 2 parameters :
 - $\alpha = \angle (\nabla n_e, \mathbf{B})$, with $\alpha \in [0^\circ, 90^\circ]$ by 3° steps
 - $\epsilon = \text{centile}(||\nabla n_e||)$, with $\epsilon \in [0\%, 100\%]$ by 10% steps
 - Since there is no reliable model on intermittency, active sources are assumed to be permanent.

Generation scenarios:

Results : Generation scenarios compatible with the nKOM

Results : Predicted sources distribution for the nKOM

Results : Generation scenarios compatible with the nLF

Results : Predicted sources distribution for the nLF

ÚSTAV FYZIKY ATMOSFÉRY AV ČR, v. v. i.

LIRA 💬

Summary : generation and location of the jovian plasma emissions

- nKOM :
 - XO : It is difficult to constrain the characteristics of the emissions, but simulations suggest its cut-off in X-mode.
 - **ZO** : Compatible with a generation at ω_{pe} for the $\alpha \sim 55.5^{\circ} \pm 1.5^{\circ}$.
- nLF:
 - XO : Compatible with a generation at ω_{pe} and $2\omega_{pe}$ in the regions where $\alpha > 75^{\circ}$ (i.e., $\nabla n_e \perp B$)
 - ZO :
 - Partly compatible with a generation at ω_{pe} in the regions where $\alpha > 75^{\circ}$ (i.e., $\nabla n_e \perp B$)
 - Partly compatible with a generation at $2\omega_{pe}$ in the regions where $\alpha < 15^{\circ}$ (i.e, $\nabla n_e \parallel B$).

• Imai et al. (2017) : nKOM and nLF sources locations for the Juno-Waves observations near the flyby of the PJ01.

 Imai et al. (2017) : nKOM and nLF sources locations for the Juno-Waves observations near the flyby of the PJ01.

 Imai et al. (2017) : nKOM and nLF sources locations for the Juno-Waves observations near the flyby of the PJ01.

Thank you for your attention !

Conclusion

- It is possible to constraint planetary plasma emissions using the geometrical statistics of spacecraft observations.
- Simulation of spacecraft observation with LsPRESSO :
 - Allow to deduce constrain the generation and the location of the radio sources.
 - **Capable to reproduce** the visibility of the emissions in the time-frequency plane
- New constraints on the nKOM and the nLF.
- Articles :
 - Study on the nKOM : published [Boudouma et al., JGR, 2024]
 - Study on the nKOM & the nLF + propagation modes : about to be submitted [Boudouma et al., JGR, 2025]

LsPRESSO: generation and location of the saturnian plasma emissions

- Application of the method for the study of plasma emissions from Saturn:
 - Cassini-RPWS observations: Similarities of Saturn's narrowband (NB) emissions to nKOM and nLF
 - Application of the presented study to the Cassini-RPWS observations (flux and polarisation)

nKOM and nLF observations history

Radio observations with the Waves instrument

- Constitution of the Juno-Waves radio observations database:
 - Calibration of the radio signal measured by the Waves instrument (Louis et al., JGR, 2021)
 - Participation in the development of the SPACE cataloguing tool (Louis et al., 2022)
 - Extension of the Jovian radio component catalog (formerly covering 2016-2019) until the beginning of 2023 (Boudouma et al., 2024).

Characteristic frequencies of electrostatic waves

- In plasmas, the dynamics of charged particles are coupled with the electric fields **E** and magnetic fields **B**:
 - Collective motions of particles in the form of waves of matter, called electrostatic waves
 - In magnetized plasmas, these electrostatic waves are described according to 2 characteristic frequencies:

Linear Mode Conversion Mechanisms

- Inhomogeneous plasma:
 - Energy transfer from trapped modes (W or Z) to free modes (O or X) at $\omega \sim \omega_{pe}$

Example of linear conversion of a wave in Z-mode to O-mode.

Nonlinear mode conversion mechanisms: three-wave coupling

- Homogeneous or inhomogeneous plasma:
 - In space plasmas, electrostatic waves, called Langmuir waves, can convert to electromagnetic waves in Oand X-mode at $\omega \sim \omega_{pe}$ and $\omega \sim 2\omega_{pe}$ through the 3-wave coupling process.

Génération des ondes électrostatiques dans les plasmas spatiaux

- Les ondes électrostatiques émergent des instabilités du plasma :
 - Les oscillations « plasma », aussi appelées, ondes de Langmuir, sont générées suivant l'instabilité faisceauplasma (ou « bump-on-tail »).

Simulation PIC 1D de l'instabilité faisceau plasma :

- En vert : la population d'électrons du plasma
- En rose : la population d'électrons du faisceau de densité plus faible et de vitesse positive relativement à celle du plasma

Source : Chaîne YouTube de la Fédération PLAS@PAR, « *Kinetic simulation of the bump-on-tail instability* »

Propagation of electromagnetic waves in plasmas

• Calculation of the refractive index of waves in plasma

Plasma emission generation: non-linear conversion of Langmuir waves

Schéma de conversion non-linéaire d'ondes de Langmuir en ondes électromagnétiques à ω_{pe} et $2\omega_{pe}$ (Gauthier, 2023)

Latitude and frequency distributions of the Jovian radio components (Louis et al. 2021)

Maser-cyclotron Emissions

PSL🗶

Intermittency of the nKOM (Louarn et al., 1998, 2000, 2001, 2014)

nKOM sources activation

Mode separation: latitude and frequency distributions

Initialisation : Simulation des observations de Juno

- Environnement :
 - Plasma : modèle de densité diffusif de Imai (2016) limité entre $4 13 R_i$.
 - Champ magnétique : modèle de champ magnétique VIP4 de Connerney et al. (1998)
 - Maille du domaine de simulation : $0.1 R_i$
- Observateur :
 - Trajectoire de Juno entre 2016 et 2019
 - Echantillonnage spatial suivant $\delta\theta = 1.5^{\circ}$ et $\delta\phi = 2^{\circ}$, en latitude et longitude.

Plasma environment modeling

Cartes méridiennes et équatoriales de n_e et B prédites à partir des modèles de densité diffusif de Imai (2016) et de champ magnétique et disque de courant VIP4 (Connerney et al., 1998)

Sources activation parameters

Cartes méridiennes et équatoriales de $\angle(\nabla n_e, B)$ et $||\nabla n_e||$ prédites à partir des modèles de densité diffusif de Imai (2016) et de champ magnétique et disque de courant VIP4 (Connerney et al., 1998)

Distribution en fréquence de la norme du gradient

Correlation-inclusion coefficient

Parametric study : generation scenario compatibility with the observations

Exemple nKOM : compatibilité des scénarios de génération avec les observations

Exemple nKOM : compatibilité des scénarios de génération avec les observations

Mode XO : distribution du coefficient de corrélation-inclusion dans l'espace des paramètres (mode O)

Mode XO : distribution du coefficient de corrélation-inclusion dans l'espace des paramètres (mode X)

Mode ZO : distribution du coefficient de corrélation-inclusion dans l'espace des paramètres (mode O)

Mode ZO : distribution du coefficient de corrélation-inclusion dans l'espace des paramètres (mode X)

Results: compatibility of the generation scenarios with all Juno-Waves observations

Coupure	Scénario	Corrélation Maximale C_{max}								
		nKOM		nLF		nKOM+nLF				
		Total	XO	ZO	Total	XO	ZO	Total	XO	ZO
mode O	#1	21%	26%	22%	-2%	5%	9%	8%	1%	12%
	#2	23%	51%	0%	1%	2%	-1%	13%	24%	-1%
	#3	39%	27%	37%	41%	48%	22%	44%	46%	29%
	#4	22%	25%	20%	41%	45%	55%	45%	41%	54%
mode X	#1	11%	20%	0%	-1%	0%	9%	4%	6%	9%
	#2	22%	50%	0%	1%	2%	-1%	12%	21%	-1%
	#3	24%	47%	0%	0%	0%	0%	7%	13%	0%
	#4	26%	53%	0%	38%	49%	0%	33%	46%	0%

• Imai et al. (2017) : nKOM and nLF sources locations for the Juno-Waves observations near the flyby of the PJ01.

Observatoire de Paris

PSL 🔀

LIRA

ÚSTAV FYZIKY ATMOSFÉRY