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Introduction

> We analyzed NOAA reports to retrieve a large number of solar flares between
1996 and 2025 that were also localized at Ha.

» Wind/WAVES RAD1 data were checked to associate these flares with type Ill
radio bursts.

» Events with data gaps and complex structures (multiple injections/eruptions) were
excluded to retain only simple flare + type Il events.
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Flare Occurrence and Selection
Monthly GOES Flare Counts vs. Sunspot Number (1996-2025)
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» Found ~13,600 flares
(1996-2025) localized at Ha.
Their occurrence correlates well
with the solar cycle.

» Only 3.2% of flares meet our
criteria (simple events with good
data), after excluding events with
data gaps or complex structures.
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All Flares vs. Radio-Associated Flares

Parameter distributions: all flares vs. radio-associated flares
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Spatial and energetic coverage of flares are about the same for radio-quiet (blue) and radio-loud
(green). Only the most intense flares tend to produce complex radio bursts (excluded from our

sample), so there are not many extreme cases included.EI




Longitude Prediction for All Flares
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We observe an eastward drift of ~13° in predicted flare longitude (from Parker spiral fitting), and the
mean absolute error (MAE) is about 10°.



Longitude Prediction for Central Flares (£20°)
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Restricting to flares within 20° of the Sun's central meridian, the prediction improves: the MAE is
about 7°.
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Correlation analysis for all flares (Kendall's 7 coefficients and p-values shown).
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Correlation analysis for flares within £20° of central meridian.



Discussion: Radio Proxies for Flare Physics

v

Solar Orbiter's 1 MHz beacon streams burst flux to Earth within minutes
Beacon currently lacks direction-finding capability

Future beacon payloads could include simple DF sensors for real-time source
localization

SunRISE mission will offer limited beacon data and—hopefully—basic DF testing

A dedicated radio-space-weather satellite (or small constellation) with beacon +
interferometric DF could provide continuous, rapid flare longitude and intensity
diagnostics



Summary

P> Largest clean sample of simple flare—type Il pairs; radio-only longitude errors as
low as 7° for central events

» Three 1 MHz metrics (peak flux, burst duration, integrated flux) carry significant
flare-energy information

» Real-time application already feasible via Solar Orbiter beacon

» Next step: add DF capability to beacon payloads for direct localization SunRISE
will test beacon/DF concepts soon

» A purpose-built radio-weather constellation could deliver uninterrupted,
high-precision flare forecasts



